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Introduction

The high-order accurate numerical solution of systems of nonlinear conservation laws remains a computa-
tionally expensive endeavor. This article considers simplified forms of the Discontinuous Galerkin (DG) and
Discontinuous Galerkin least-squares (DGLS) finite element methods tailored to systems of first-order non-
linear conservation laws with convex entropy extension. Central to the development is the Eigenvalue Scaling
Theorem which characterizes right symmetrizers of entropy endowed systems of conservation laws in terms
of scaled eigenvectors of the corresponding flux Jacobian matrices. This yields a simplification of the DG
and DGLS methods without sacrificing the pleasing energy properties of symmetric variable formulations.
The next section briefly reviews a number of results in symmetrization theory discussed in detail in Barth
[2,1].

1 Brief Review of Symmetrization and the Eigenvector Scaling Theorem

Consider a system of m coupled first-order differential equations in d space coordinates and time which
represents a conservation law process. Let u(x, t) : IRd× IR+ 7→ IRm denote the dependent solution variables
and f(u) : IRm 7→ IRm×d the flux vector. The prototype conservation system is then given by

u,t + f i,xi = 0 (1.1)

with implied summation on the index i. Additionally, the system is assumed to possess an scalar entropy
extension. Let U(u) : IRm 7→ IR denote an entropy function and F (u) : IRm 7→ IRd the entropy flux such
that in addition to (1.1) the following inequality holds

U,t + F i,xi ≤ 0 (1.2)

with equality for smooth solutions. In symmetrization theory for first-order conservation laws, one seeks a
mapping u(v) : IRm 7→ IRm applied to (1.1) so that when transformed

u,vv,t + f i,vv,xi = 0 (1.3)

the matrix u,v is symmetric positive definite (SPD) and the matrices f i,v are symmetric. Clearly, if functions
U(v),F i(v) : IRm 7→ IR can be found so that

uT = U,v, (f i)T = F i,v (1.4)

then the matrices

u,v = U,v,v, f i,v = F i,v,v (1.5)

are symmetric. Since v is not yet known, little progress has been made. Introducing the following duality
relationships

U(u) = vT (u)u− U(v(u)) (1.6)

F i(u) = vT (u)f i(u)−F i(v(u)) (1.7)

followed by differentiation yields

U,u = vT + uTv,u − U,vv,u = vT (1.8)

F i,u = vTf i,u + (f i)Tv,u −F i,vv,u = vTf i,u . (1.9)

Equation (1.8) gives an explicit expression for the entropy variables v in terms of derivatives of the entropy
function U(u)

vT = U,u . (1.10)

Finally, we require convexity of U(u) which insures positive definiteness of v,u and u,v and implies hyper-
bolicity of (1.1) [5,9], viz., that the linear combination f ,u(n) = ni f

i
,u has real eigenvalues and a complete

set of real-valued eigenvectors for all nonzero n ∈ IRd. This result follows immediately from the identity

(u,v)−1/2f ,u(n)(u,v)1/2 = (u,v)−1/2f ,v(n)(u,v)−1/2︸ ︷︷ ︸
symm

which shows that f ,u(n) is similar to a symmetric matrix.
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1.1 The Eigenvector Scaling Theorem

Next, we consider an important algebraic property of right symmetrizable systems which is used later in
the implementation of the DG and DGLS schemes. Simplifying upon the previous notation, let Ã0 = u,v,
Ai = f i,v, Ãi = AiÃ0 and rewrite (1.3)

Ã0v,t + Ãiv,xi = 0 . (1.11)

The following theorem states a property of the symmetric matrix Ãi symmetrized via the symmetric positive
definite matrix Ã0.

Theorem 1.1 (Eigenvector Scaling). Let A ∈ IRn×n be an arbitrary diagonalizable matrix and S the set
of all right symmetrizers:

S = {B ∈ IRn×n | B SPD, AB symmetric}.

Further, let R ∈ IRn×n denote the right eigenvector matrix which diagonalizes A

A = RΛR−1

with r distinct eigenvalues, Λ = Diag(λ1Im1×m1 , λ2Im2×m2 , . . . , λrImr×mr ). Then for each B ∈ S there exists
a symmetric block diagonal matrix T = Diag(Tm1×m1 , Tm2×m2 , . . . , Tmr×mr ) that block scales columns of R,
R̃ = RT , such that

B = R̃R̃T , A = R̃ΛR̃−1

which imply that

AB = R̃ΛR̃T .

Proof. Omitted, see [2]. ut
Note that this last formula states a congruence relationship since R̃ is not generally orthonormal and Λ does
not represent the eigenvalues of AB. The Eigenvalue Scaling Theorem is a variant of the well known theory
developed for the commuting matrix equation AX −XA = 0, A,X ∈ IRn×n, see for example Gantmacher
[6]. Examples of the Eigenvector Scaling Theorem for the Euler and magnetohydrodynamic equations are
given in [2].

1.2 Generalized Matrix Functions with Respect to the Riemannian Matrix Ã0

For use in later developments, it is useful to define the following generic matrix function f(Ã) with respect
to the Riemannian matrix Ã0

fÃ0
(Ã) ≡ Ã0f(Ã−1

0 Ã) . (1.12)

This definition reflects the following steps: (1) multiplication of the system (1.11) by Ã−1
0 in order to restore

a Euclidean metric, (2) invocation of the matrix function on the matrix product Ã−1
0 Ãi, (3) multiplication

of the result by Ã0 to restore the original metric matrix. Proposition 1.2 shows that this generalized matrix
function is symmetric and has a rather simple construction for symmetrizable systems by exploiting the
Eigenvalue Scaling Theorem.

Proposition 1.2. Barth [2,1]. Let Ã0 denote the SPD right symmetrizer of A such that Ã = AÃ0, Ã0 =
R̃R̃T , and A = R̃ΛR̃−1. The generalized matrix function fÃ0

(Ã) is symmetric and defined canonically in
terms of entropy scaled eigenvectors as

fÃ0
(Ã) = R̃f(Λ)R̃T . (1.13)

In later sections, the generalized matrix absolute value function |Ã|Ã0
will be required

|Ã|Ã0
= R̃|Λ|R̃T . (1.14)
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This matrix absolute value function has a natural generalization to IRd using an Lp-like norm definition

|Ã|p,Ã0
=

(
d∑
i=1

|Ai|p
)1/p

Ã0 (1.15)

which has a particularly simple form when p = 1 which is used later in the least-squares term appearing in
the DGLS method

|Ã|1,Ã0
=

d∑
i=1

R̃i |Λi| R̃Ti . (1.16)

2 Simplified DG, DGLS, and GLS Finite Element Methods

Let Ω denote a spatial domain composed of nonoverlapping elements Ti, Ω = ∪Ti, Ti ∩ Tj = ∅, i 6= j and
In =]tn, tn+1[ the n-th time interval. It is useful to also define the element set T = {T1, T2, . . . , T|T |} and edge
set E = {e1, e2, . . . , e|E|}. To simplify the exposition, consider a single variational formulation with weakly
enforced boundary conditions. By choosing the correct space of functions (discontinuous or continuous) and
omitting the least-squares variational term, one can switch from the DGLS formulation to the DG or GLS
formulations. In the GLS formulation [7,10], functions are continuous in space and discontinuous in time

Vh =
{
vh |vh ∈

(
C0(Ω × In)

)m
,vh|T×In ∈

(
Pk(T × In)

)m}
where v denotes the entropy variables for the system. In the DG and DGLS formulations [8,3], functions are
discontinuous in space and time, i.e.

Vh =
{
vh |vh|T×In ∈

(
Pk(T × In)

)m}
.

Consider the prototype hyperbolic system for the space-time domain Ω×[0, T ] with boundary data g imposed
on Γ via admissibility condition

u,t + f i,xi = 0 in Ω

A−(n) (g − u) = 0 on Γ (2.1)

or in symmetric quasi-linear form for smooth solutions

Ã0v,t + Ãiv,xi = 0 in Ω

Ã−(n) (g̃ − v) = 0 on Γ (2.2)

with A(n) = niAi and Ã(n) = ni Ãi. The combined GLS and DG schemes are defined by the following
stabilized variational formulation:
Find vh ∈ Vh such that for all wh ∈ Vh

B(vh,wh)GAL +B(vh,wh)LS +B(vh,wh)BC = 0 (2.3)

B(v,w)GAL =
∫
In

∫
Ω

(−u(v) ·w,t − f i(v) ·w,xi) dx dt

+
∫
Ω

(
w(tn+1

− ) · u(v(tn+1
− ))−w(tn+) · u(v(tn−))

)
dx

+
∫
In

∑
e∈E

∫
e

(w(x−)−w(x+)) · h(v(x−),v(x+);n) dx dt

B(v,w)LS =
∫
In

∑
T∈T

∫
T

(
Ã0w,t + Ãiw,xi

)
· τ
(
Ã0v,t + Ãiv,xi

)
dx dt

B(v,w)BC =
∫
In

∫
Γ

w · h(v, g̃;n) dx dt

where h denotes a numerical flux function and τ a small m×m SPD matrix for the least-squares term. For
theoretical and practical reasons, two numerical flux functions are considered. Both are of the form

h(v−,v+;n) =
1
2

(f(v−;n) + f(v+;n))− 1
2
hd(v−,v+;n) (2.4)
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and consistent with the true flux in the sense that h(v,v;n) = f(v;n).

1. Symmetric Mean-Value Flux. This flux is motivated from the nonlinear energy theory of Sect. 2.2.
Define the parameterization v(θ) ≡ v(x−) + θ [v]x+

x−
. The symmetric mean-value flux is then given by

hdSMV(v−,v+;n) = |Ã(v−,v+;n)|SMV [v]x+
x−

with

|Ã(v−,v+;n)|SMV ≡
∫ 1

0

|Ã(v(θ);n)|Ã0
dθ . (2.5)

By construction, the matrix |Ã(v−,v+;n)|SMV is symmetric positive semi-definite. Using this form of
flux dissipation (2.5), nonlinear entropy norm stability of the DG, DGLS, and GLS formulations can be
shown as discussed in Sect. 2.2. In addition, let

Ã(n)SMV =
∫ 1

0

Ã(v(θ);n) dθ (2.6)

denote the integral mean-value matrix for which the following useful property exists

[f(n)]x+
x−

= Ã(n)SMV [v]x+
x−

(2.7)

which is a necessary ingredient for optimal discontinuity resolution. To prove stability of other (more
practical) forms of flux dissipation, one formally needs only show that the new form is more energy
dissipative than the symmetric mean-value form in the following sense:

[v]x+
x−
· hdSMV ≤ [v]x+

x−
· hd .

2. Discrete Symmetric Mean-Value Flux. The discrete symmetric mean-value flux function replaces
the state-space path integration in (2.5) by N point numerical quadrature

hdDSMV(v−,v+;n) = |Ã(v−,v+;n)|DSMV [v]x+
x−

with

|Ã(v−,v+;n)|DSMV [v]x+
x−
≡

N∑
q=1

wq |Ã(v(θq);n)|Ã0
[v]x+

x−
(2.8)

where wq and θq denotes the quadrature weights and positions. In forming this flux, recall from the
Eigenvalue Scaling Theorem that |Ã|Ã0

= R̃ |Λ| R̃T . This flux function is of practical interest since it
is easily formed and has a relatively straightforward Jacobian linearization as will be shown later. The
absolute value in this equation renders the state-space path integration from v− to v+ slope discontinuous
whenever entries in Λ change sign. In this case, to retain accuracy of the numerical quadrature at n ≤ m
possible points of slope discontinuity, the path integration is further subdivided into subintervals, e.g.
[v−,v+] = [v−,v∗1] ∪ [v∗1,v

∗
2] ∪ . . . ∪ [vn,v+] where v∗i ≡ v(θi) is a location θi such that an entry of Λ

vanishes. In practice, satisfactory results [1] have been obtained using 2-point Gaussian quadrature rules
(which integrate cubic polynomials exactly).

2.1 Linear Energy Analysis

Due to length constraints of this article, we simply restate some relevant theorems given in Barth [2,1]
concerning energy boundedness of variational form (2.3) for systems of hyperbolic equations.

Theorem 2.1. Global Energy Stability (Linear Hyperbolic System). The variational formulation
(2.3) for linear hyperbolic systems is energy stable (modulo data g̃) with the following global energy balance:

N−1∑
n=0

(
‖[v]

tn+
tn−
‖2
Ã0,Ω

+ 2‖Ã0v,t + Ãiv,xi‖2τ ,Ω×In +
∑
e∈E
〈[v]x+

x−〉
2
|Ã|,e×In

)

+
N−1∑
n=0

〈v〉2|Ã|,Γ×In + ‖v(tN− )‖2
Ã0,Ω

= ‖v(t0−)‖2
Ã0,Ω

+
N−1∑
n=0

2 〈v, g̃〉(−Ã−),Γ×In .
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Proof. Omitted, see [2,1]. ut
This energy balance equation formally bounds the energy at time tN− in terms of initial data and inflow
boundary data. Next, we consider the full nonlinear system of conservation laws.

2.2 Nonlinear Energy Analysis

Before presenting the nonlinear energy result, we prove a general lemma and consequential corollaries con-
cerning entropy function/flux jump identities at space-time slab interfaces. Note that throughout this section,
we utilize the state-space parameterization

v(θ) ≡ v(x−) + θ [v]x+
x−

(similarly across time slab interfaces) for use in state-space path integrations and the interface averaging
operator

〈〈v〉〉x+
x−
≡ v(x−) + v(x+)

2
.

Lemma 2.2. Interface Jump Identities. Let Z(u),Z(v) : IRm 7→ IR be twice differentiable functions of
their argument satisfying the duality relationship

Z(u) + Z(v) = Z,v v . (2.9)

The following jump identities hold across interfaces

[Z]x+
x− − [Z,v]x+

x− v(x+) +
∫ 1

0

(1− θ)[v]x+
x−· Z,v,v(v(θ)) [v]x+

x− d θ = 0 (2.10a)

[Z]x+
x− − [Z,v]x+

x− v(x−)−
∫ 1

0

θ [v]x+
x−· Z,v,v(v(θ)) [v]x+

x− dθ = 0 . (2.10b)

Proof. Recall the following forms of Taylor series with integral remainder

[Z]x+
x−
−Z,v(x+) [v]x+

x−
+
∫ 1

0

θ [v]x+
x−
· Z,v,v (v(θ)) [v]x+

x−
dθ = 0 (2.11a)

[Z]x+
x−
−Z,v(x−) [v]x+

x−
−
∫ 1

0

(1− θ) [v]x+
x−
· Z,v,v (v(θ)) [v]x+

x−
dθ = 0 (2.11b)

and the jump form of (2.9)

[Z]x+
x−

+ [Z]x+
x−

= 〈〈Z,v〉〉x+
x−

[v]x+
x−

+ 〈〈v〉〉x+
x−

[Z,v]x+
x−

. (2.12)

Combining (2.11a), (2.11b) and (2.12) yields

[Z]x+
x−
− 〈〈v〉〉x+

x−
[Z,v]x+

x−
+

1
2

∫ 1

0

(1− 2 θ) [v]x+
x−
· Z,v,v (v(θ)) [v]x+

x−
dθ = 0. (2.13)

Finally, algebraically manipulating this form together with the mean-value identity

[Z,v]x+
x−

=
∫ 1

0

Z,v,v(v(θ)) [v]x+
x−

dθ (2.14)

produces the stated lemma. ut

Corollary 2.3. Temporal Space-Time Slab Interface Identity. Let t± denote a temporal space-time
slab interface. The following entropy function jump identity holds across time slab interfaces∫

Ω

(
[U ]t+t− − v

T (t+) [u]t+t−
)
dx+

1
2
‖| [v]t+t− |‖

2
Ã0,Ω

= 0 (2.15)

where

‖| [v]t+t− |‖
2
Ã0,Ω

≡
∫
Ω

∫ 1

0

2 (1− θ) [v]t+t− · Ã0(v(θ)) [v]t+t− dθ dx ≥ 0 . (2.16)
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Proof. Set Z = U , Z = U with U,v = uT and U,v,v = Ã0 in Lemma 2.2 and replace x± with t± in (2.10a),
see [10] for an alternative form. ut

Corollary 2.4. Spatial Space-Time Slab Interface Identity. Let x± denote a spatial element interface.
The following entropy flux jump identity holds across spatial element interfaces[

F i
]x+

x−
− 〈〈vT 〉〉x+

x−

[
f i
]x+

x−
+

1
2

∫ 1

0

(1− 2 θ) [v]x+
x−
· Ãi(v(θ)) [v]x+

x−
dθ = 0 . (2.17)

Proof. Set Z = F i, Z = F i, i = 1, . . . , d with F i,v = (f i)T and F i,v,v = Ãi in (2.13) of Lemma 2.2. ut

Note that in actual numerical calculations, it is desirable to use the variational form given by (2.3) since
integration by parts has been used to insure exact discrete conservation even with inexact numerical quadra-
ture of the various integrals. For analysis purposes, however, it is desirable to use the following equivalent
non-integrated-by-parts formulation:

Find vh ∈ Vh such that for all wh ∈ Vh

B(vh,wh)GAL +B(vh,wh)LS +B(vh,wh)BC = 0 (2.18)

B(v,w)GAL =
∫
In

∫
Ω

w ·
(
u,t + f i,xi(v)

)
dx dt

+
∫
Ω

w(tn+) · [u]
tn+
tn−
dx

+
∫
In

∑
e∈E

∫
e

1
2

[w]x+
x−
· hd(v(x−),v(x+);n) dx dt

+
∫
In

∑
e∈E

∫
e

〈〈w〉〉x+
x−
· [f(v;n)]x+

x−
dx dt

B(v,w)LS =
∫
In

∑
T∈T

∫
T

(
Ã0w,t + Ãiw,xi

)
· τ
(
Ã0v,t + Ãiv,xi

)
dx dt

B(v,w)BC =
∫
In

∫
Γ

w · 1
2

(
f(g̃;n)− f(v;n)− hd(v, g̃;n)

)
dx dt

where hd denotes the flux dissipation term incorporated into the total numerical flux.

Theorem 2.5. Global Entropy Norm Stability (Nonlinear Hyperbolic System). The variational
formulation (2.3) for nonlinear systems of conservation laws with convex entropy extension and symmetric
mean-value flux dissipation

hdSMV(v−,v+;n) = |A|SMV [v]x+
x−

, |A|SMV ≡
∫ 1

0

|Ã(v(θ);n)|Ã0
dθ

is entropy norm stable (modulo data g̃) with the following global balance:
N−1∑
n=0

(
‖| [v]

tn+
tn−
|‖2
Ã0,Ω

+ 2‖Ã0v,t + Ãiv,xi‖2τ ,Ω×In +
∑
e∈E
〈[v]x+

x−〉
2
|Ã|,e×In

)

+
N−1∑
n=0

〈v〉2|Ã|,Γ×In+
∫
Ω

2U(tN− ) dx=
∫
Ω

2U(t0−) dx+
N−1∑
n=0

2
(
〈v, g̃〉

(−Ã−),Γ×In+GnΓ (g̃,v)
)

with

|Ã(n)| =
∫ 1

0

2 (1− θ)
(
Ã+(v(θ);n)Ã0

− Ã−(v(1− θ);n)Ã0

)
dθ

and

GnΓ (g̃,v) =
∫
In

∫
Γ

(
F (g̃;n)−

∫ 1

0

θ g̃ ·A(v(θ);n) g̃ dθ
)
dx dt .
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Proof. Construct the energy balance for the interval [t0−, tN− ] = ∪N−1
n=0 I

n by setting w = v and evaluating
the various integrals. Consider the time derivative integral∫

Ω

∫
In
vTu,t dt dx =

∫
Ω

∫
In
U,t dt dx =

∫
Ω

(
[U ]

tn+1
−
tn−
− [U ]

tn+
tn−

)
dx

and combine with the jump integral across time slabs. From Corollary 2.3∫
Ω

∫
In
vTu,t dt dx+

∫
Ω

vT (tn+)[u]
tn+
tn−
dx =

∫
Ω

[U ]
tn+1
−
tn−

dx+
1
2
‖| [v]

tn+
tn−
‖|2
Ã0,Ω

.

When summed over all time slabs, the first term on the right-hand-side of this equation vanishes except for
initial and final time slab contributions. Next, consider the spatial operator term and apply the divergence
theorem ∫

In

∫
Ω

vTf i,xi dx dt =
∫
In

∫
Ω

F i,xi dx dt

=
∫
In

∑
e∈E

∫
e

− [F (v;n)]x+
x−

dx dt+
∫
In

∫
Γ

F (v;n) dx dt

where F (v;n) = ni F
i(v). From Corollary 2.4 and the definition of |Ã|, it follows that∫

In

∫
Ω

vTf i,xi dx dt+
∫
In

∑
e∈E

∫
e

(
〈〈v〉〉x+

x−
· [f(n)]x+

x−
+

1
2

[v]x+
x−
· hdSMV

)
dx dt

=
∑
e∈E

1
2
〈[v]x+

x−〉
2
|Ã|,e×In +

∫
In

∫
Γ

F (v;n) dx dt .

In summary, collecting terms we have

B(v,v)GAL =
∫
Ω

[U ]
tn+1
−
tn−

dx+
1
2
‖| [v]

tn+
tn−
‖|2
Ã0,Ω

+
∑
e∈E

1
2
〈[v]x+

x−〉
2
|Ã|,e×In

+
∫
In

∫
Γ

F (v;n) dx dt .

The least-squares integral produces a pure quadratic form without modification

B(v,v)LS = ‖Ã0v,t + Ãiv,xi‖2τ ,Ω×In .

Finally, consider the boundary condition terms and apply Corollary 2.4

B(v,v)BC =
∫
In

∫
Γ

(1
2
v · (f(g̃;n)− f(v;n))− 1

2
v · |A(n)|SMV(g̃ − v)

)
dx dt

=
∫
In

∫
Γ

(
F (g̃;n)−F (v;n)+

1
2

∫ 1

0

(1−2 θ)(g̃−v)·Ã(v(θ);n) (g̃−v) dθ

−1
2
g · (f(g̃;n)− f(v;n))− 1

2
v · |A(n)|SMV(g̃ − v)

)
dx dt

=
∫
In

∫
Γ

(
F (g̃;n)− F (v;n)−

∫ 1

0

θ g̃ · Ã(v(θ)) g̃ dθ

+
1
2
v · |Ã(n)|v − v · Ã−(n) g̃

)
dx dt .

Combining the above results, summing over time slabs, and multiplication by two yields an entropy norm
balance equation which bounds the global entropy norm of the system at the final time T in terms of the
initial data and boundary data g̃. ut

Remark 2.6. Note that when the Ãi matrices are assumed constant, f i = Ãi v and F i = 1
2v · Ãiv so that the

additional term GnΓ (g̃,v;n) vanishes identically and a one-to-one correspondence of terms between theorem
2.1 and theorem 2.5 is achieved.
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2.3 A Simplified DG Method in Symmetric Form

DG Flux Formulas. Simplification of the discontinuous Galerkin method follows by choosing the discrete
symmetric mean-value flux function proposed earlier, i.e.

hDSMV(v−,v+;n) =
1
2

(f(v−;n) + f(v+;n))− 1
2

N∑
q=1

wq|Ã(v(θq));n)|Ã0
[v]x+

x−

with |Ã|Ã0
= R̃ |Λ| R̃T , v(θ) = v(x−)+θ [v]x+

x−
. By using sufficient order numerical quadrature and subdivision

of the state-space path integration at points of non-differentiability, the hdDSMV flux can be made arbitrarily
close to hdSMV for which nonlinear stability in the DG method follows from the analysis of Sect. 2.2. Suppose
that elements of |Ã(v(θq));n)|Ã0

remain bounded for θ ∈ [0, 1] independent of N . Using N point Gaussian
quadrature

‖hdDSMV − h
d
SMV‖2 = O([v]2N+1) .

Next, we consider single-point quadrature formulas.

Theorem 2.7. Discrete Symmetric Mean-Value Flux. Let v∗ be a state such that

[v]x+
x−
· |Ã(v∗;n)| [v]x+

x−
= sup

0≤θ≤1
[v]x+

x−
· |Ã(v(θ);n)|Ã0

[v]x+
x−

.

The variational formulation (2.3) with numerical flux function

hDSMV∗(v−,v+;n) =
1
2

(f(v−;n) + f(v+;n))− 1
2
|Ã(v∗);n)|Ã0

[v]x+
x−

(2.19)

is energy bounded in the sense of Theorem 2.5.

Proof. It is sufficient to show that the given flux dissipation

hdDSMV∗ = |Ã(v∗;n)|Ã0
[v]x+

x−

exceeds the symmetric mean-value value flux dissipation. This is reflected by the algebraic condition

[v]x+
x−
· hdSMV ≤ [v]x+

x−
· hdDSMV∗ .

From the symmetric mean-value flux definition

[v]x+
x−
· hdSMV = [v]x+

x−
·
∫ 1

0

|Ã(v(θ);n)|Ã0
dθ [v]x+

x−

≤ sup
0≤θ≤1

[v]x+
x−
· |Ã(v(θ);n)|Ã0

[v]x+
x−

= [v]x+
x−
· |Ã(v∗;n)|Ã0

[v]x+
x−

= [v]x+
x−
· hdDSMV .

This establishes nonlinear stability of the DG method using the simplified flux function. ut

Remark 2.8. Unfortunately, the state v∗ is not generally known in closed form. Cockburn and Shu [4] have
shown impressive results using the simpler Lax-Friedrichs flux. It is straightforward to derive a corresponding
“symmetric Lax-Friedrichs” numerical flux function

hSLF(v−,v+;n) =
1
2

(f(v−;n) + f(v+;n))− 1
2
λmax Ã0 (v∗) [v]x+

x−

with λmax = sup0≤θ≤1 (max1≤i≤m (Λii(v(θ)))). Nonlinear entropy norm stability follows starting from The-
orem 2.7

[v]x+
x−
· hdSMV ≤ [v]x+

x−
· |Ã(v∗;n)|Ã0

[v]x+
x−

= [v]x+
x−
· R̃(v∗;n) |Λ(v∗;n)| R̃T (v∗;n) [v]x+

x−

≤ sup
0≤θ≤1

(
max

1≤i≤m

(
Λii(v(θ))

))
[v]x+

x−
· R̃(v∗;n) R̃T (v∗;n) [v]x+

x−

= λmax [v]x+
x−
· Ã0(v∗;n) [v]x+

x−
.
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Finally, for systems such as the Euler equations of gas dynamics that exhibit the property ∂4U
∂vivjvkvl

zizjzkzl >

0, |z| 6= 0, we have

[v]x+
x−
· Ã0(v∗;n) [v]x+

x−
≤ max([v]x+

x−
· Ã0(v(0);n) [v]x+

x−
, [v]x+

x−
· Ã0(v(1);n) [v]x+

x−
)

thereby avoiding the need for calculating v∗ altogether, see [1] for details.

DG Jacobian Derivatives. Using the discrete mean-value fluxes, it becomes straightforward to compute
Jacobian derivatives of various terms. For example, to compute derivatives of |Ã|Ã0

with respect to a vector
w, chain-rule differentiation is used

∂|Ã(n)|Ã0

∂w
=
∂R̃(n)
∂w

|Λ(n)|R̃T (n) + R̃(n)
∂|Λ(n)|
∂w

R̃T (n) + R̃(n)|Λ(n)|∂R̃
T (n)
∂w

.

Note that a high degree of computational efficiency can be achieved in the calculation of these Jacobian
terms by exploiting the transpose symmetry of intermediate products.

2.4 Simplified Least-Squares Stabilization in Symmetric Form

Consider an isoparametric element mapping ξ 7→ x from a unit element space ξ to a physical space x. In the
papers by Hughes and Mallet [7] and Shakib [10], they proposed the following form for τ appearing in (2.3)
on a mapped element

τ p = |B̃|−1

p,Ã0
, |B̃|p,Ã0

=

(
d∑
i=0

|Bi|p
)1/p

Ã0, Bi =
d∑
j=0

ξ,xjAj . (2.20)

Equation (2.20) is of the same form given earlier in (1.15). In standard implementations of least-squares
stabilization, p = 2 is used. In light of the Eigenvector Scaling Theorem 1.1, it is useful to revisit the
derivation of τ with p = 1. Let B̃i = Bi Ã0, from (1.16) it follows that

τ 1 = |B̃|−1

1,Ã0
=

[
|∇ξ0|Ã0 +

d∑
i=1

|∇ξi| R̃(ni) |Λ(ni)| R̃T (ni)

]−1

using the entropy scaled eigenvectors R̃(ni) of B̃i. This represents a substantial simplification of the τ matrix
calculation.

3 Concluding Remarks

Simplified forms of the DG, DGLS, and GLS schemes have been presented and analyzed for first-order
systems of conservation laws with convex entropy extension. Numerical examples are given in [1] using
linear, quadratic, and cubic element approximation.
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